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Introduction
The notion that space is curved is a challengingly 
abstract idea. While students have a strong intuition 
for the concept of curvature, their intuition is based 
on the perspective of standing apart from curved 
objects and viewing them from above, which we 
cannot do when studying our own space. Instead, we 
must rely on mathematical descriptions of curvature.

Yet these mathematical descriptions are powerful, 
and the curvature of space plays a central role in con-
temporary astronomy and physics. Astronomers reg-
ularly measure the curvature of space as both a goal 
in itself and as a means to learn about the contents 
of the universe. Much of our present understanding, 
as well as some of our most mysterious unanswered 
questions, have their source in these measurements.

To build students’ comfort with abstract descrip-
tions of curvature, concrete examples like the 
surface of the Earth or everyday curved objects are 
effective stepping stones. Students can explore such 
objects to connect their intuition with the math-
ematical description, and even employ the same 
methods on everyday objects that astronomers use 
to measure the curvature of space. This provides 

an opportunity for students to make a hands-on 
connection with both contemporary science and its 
underlying mathematics.

Curvature of Space vs Curvature of the Earth
The word space has several distinct meanings, so 
let us first make clear what is meant in the phrase 
the curvature of space. In this context, scientists do 
not use the word space in the sense of outer space, 
but rather space here refers to the vast collection 
of all possible locations that objects can occupy in 
the universe. Space is the name for everywhere that 
we or any object can possibly go. It is thus impos-
sible to leave space or to even comprehend what it 
would mean to do so. Any property of space that we 
want to study, including curvature, must be studied 
entirely from the inside.

This contrasts with the most familiar curved 
surface in our lives: the Earth. Today, the most 
direct way to verify that the Earth is indeed 
curved is to view it from afar, as in Figure 1. Yet 
long before it was feasible to do this, ancient sci-
entists were aware of the curvature of the Earth. 
Our situation when studying space from within is 

analogous to their challenge, which was to study 
the curvature of the Earth without being able to 
leave its surface. They remind us of the power of 
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Figure 1: This image, known as the Blue Marble, was taken by 
the astronauts of Apollo 17 while traveling to the Moon. This 

photograph itself has a fascinating history. It is the first full image 
of the Earth taken from space, and the only one taken by a human 

being holding a camera. To learn more, visit http://www.theatlantic.
com/technology/archive/2011/04/the-blue-marble-shot-our-first-

complete-photograph-of-earth/237167/. [NASA]

http://www.theatlantic.com/technology/archive/2011/04/the-blue-marble-shot-our-first-complete-photograph-of-earth/237167/
http://www.theatlantic.com/technology/archive/2011/04/the-blue-marble-shot-our-first-complete-photograph-of-earth/237167/
http://www.theatlantic.com/technology/archive/2011/04/the-blue-marble-shot-our-first-complete-photograph-of-earth/237167/
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measurement to reveal what cannot be literally 
seen: 2,200 years before astronauts snapped the 
photograph in Figure 1, Eratosthenes in Egypt 
measured the radius of the Earth to within 15% of 

the modern value, as depicted in Figure 2.

Curvature from Within
Compared to the long history of terrestrial cur-
vature, the mathematical tools that today allow 
us to understand the curvature of space are quite 
young. In 1818, the German mathematician Carl 
Gauss was spending much of his time focused on 
the Earth’s surface, while also pondering geometry. 
Gauss was performing a geological survey of the 
newly created Kingdom of Hanover in present-day 
Germany, and was busy measuring the distances 
and angles between important landmarks. At some 
point, Gauss made an important realization: the 
curvature of the Earth would cause discrepancies 
in his measurements, which were based on plane 
geometry. He recognized that the conventional 
theorems of geometry are not absolutely true, but 
are only valid on a flat surface. On a curved surface, 
the laws of geometry are different.

A parable will help make these ideas intuitive. 
Suppose there is a construction site, and on the 
site lives a snake. This is a curious snake who loves 
geometry, and naturally goes by the name Euclid. 
Euclid’s eyesight is poor and always has been — he 
cannot see anything but the ground directly in front 
of him and has absolutely no concept of up or down. 
All Euclid knows is left, right, forward, and back. 
Nevertheless, he has a great sense of direction and 
has learned to measure distances by counting the 
time it takes to slither between two locations. Before 
construction begins, Euclid’s lot is perfectly flat. For 
entertainment, Euclid likes to slither back and forth 
across his lot. If he wants to take the shortest route 
from one side to the other, what will he do? He will 
simply travel across the lot in a straight line.

One day workers arrive and dig a deep, smooth 

hole in the center of the lot. If on the next day 
Euclid again slithers across, what will he find? It will 
now take longer to travel directly across, as he must 
climb into and then out of the hole. But remem-
ber, with no understanding of elevation and poor 
eyesight, Euclid will not recognize his up-and-down 
motion. Instead, he simply concludes that the dis-
tance across his lot is now larger. If he experiments 
with other routes, he will find the shortest path to 
the other side of the lot is now a path which curves 
around the hole. But again, as he traverses this 
shortest path Euclid will have no sense of avoiding 
a hole. He simply notices the shortest route is no 
longer a direct line. 

We usually assume that the shortest path 
between points is a direct line, but Euclid no longer 
lives on a flat surface and his geometry reflects that. 
The shortest path between two points is called a 
geodesic, and it is only on a flat surface that geode-
sics are direct lines. This is one important manifes-
tation of the effect of curvature on geometry, and 
students can explore it directly by constructing 
geodesics on curved objects, as discussed in the 
activity at the end of the article.

Measuring Curvature
Euclid the snake was stuck on a two-dimensional 
surface and was only aware of four independent 
ways to move: forward, back, right, and left. We 
have a very similar situation. We are stuck in a 
three-dimensional space and know of exactly six 
independent ways to move: up, down, forward, 
back, left, and right. Euclid could conclude that 
something odd had happened to his surface when 
he found that geodesics were no longer direct lines. 
We can do the same: simply choose two spots in the 
universe and measure the length of various paths 

Figure 2: This illustration depicts Eratosthenes’s measurement of 
the curvature of the Earth. Shown is a portion of the globe under 

the African continent, with sunbeams shown as two rays hitting the 
ground at Syene and Alexandria. When the sun is directly overhead 

in Syene, it is not directly overhead in Alexandria due to the 
curvature of the Earth. By measuring the angle between sunbeams 

and a vertical stick in Alexandria while the sun was directly overhead 
in Syene, Eratosthenes was able to estimate the radius of the 

Earth. This measurement can be replicated in the classroom, as 
discussed in the activities following the article. To learn more about 

Eratosthenes, his measurement of the Earth’s curvature, and his 
other achievements, see https://www.khanacademy.org/partner-

content/big-history-project/solar-system-and-earth/knowing-solar-
system-earth/a/eratosthenes-of-cyrene. [Wikipedia, Public Domain]

https://www.khanacademy.org/partner-content/big-history-project/solar-system-and-earth/knowing-solar-system-earth/a/eratosthenes-of-cyrene
https://www.khanacademy.org/partner-content/big-history-project/solar-system-and-earth/knowing-solar-system-earth/a/eratosthenes-of-cyrene
https://www.khanacademy.org/partner-content/big-history-project/solar-system-and-earth/knowing-solar-system-earth/a/eratosthenes-of-cyrene
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between them. It may be that a direct line through 
space is not the shortest route, in which case we 
draw inspiration from the story of Euclid and say 
that our space is curved. And further, we can char-
acterize the curvature by determining precisely how 
the geodesics differ from direct lines. 

You may have noticed a difficulty: it is not quite 
feasible to launch a crew of astronauts with tape 
measures to find geodesics through space when-
ever we are curious about its curvature. Luckily, 
we instead have an automatic tracer of geodesics: 
rays of light. Light always follows the shortest path 
through empty space, and so if we see light travel-
ing in a direct line, then we know it is crossing a 
region of flat space. On the other hand, when light 
bends we know it must be crossing a region of 
curved space. This bending of light through curved 

space is known as gravitational lensing, and is 
depicted schematically in Figure 3. Near the Earth, 
space is only very weakly curved, which is why you 
have likely never observed the beam of a flashlight 
to bend. But lensing can be drastic in regions of 
extreme curvature, resulting in many spectacular 
astronomical systems, as shown in Figure 4. 

The General Theory of Relativity
While Gauss demonstrated that the curvature of 
space could be measured using geometry, it was not 
until nearly a century later with Einstein’s publica-
tion of the General Theory of Relativity that curved 
space became a major part of astronomy. Einstein 
suggested that the curvature of space may be 
governed by a law of nature which says that objects 
warp the space around them. He proposed an exact 
mathematical rule which specifies how space will 
curve in response to any possible arrangement of 
matter, roughly saying that more massive objects 
produce stronger curvature than lighter objects. 
Einstein’s theory has been confirmed in numerous 
experiments over the last century, the first of which 
came just four years after its publication when the 
British astronomer Arthur Eddington observed that 
starlight bends as it passes through the curvature 
caused by our sun.1

The Shape and Contents of the Universe
Since Einstein’s theory says that curvature is caused 
by matter, it also provides us with a clever way to 

1 Eddington’s observation is a very significant event in the 
history of General Relativity, though historians have disputed 
the legitimacy of his original measurement. To learn more 
about his observations, see http://news.bbc.co.uk/2/hi/science/
nature/8061449.stm, and for more about his story, http://astro-
geo.oxfordjournals.org/content/50/4/4.12.full

determine the amount and arrangement of mat-
ter in a region of space. We measure the curvature 
by observing the bending of light, and then use 

Figure 3: This figure demonstrates the observable consequences 
of curvature. In the upper image, light from a distant star travels 

directly through flat, empty space to the Earth. In the lower image, 
an intervening star warps space, causing the light from a distant star 
to follow a curved geodesic. On Earth, this light appears to originate 

from somewhere other than the star’s true location. If the Earth, 
the distant star, and the intervening star are all perfectly aligned, 
then astronomers on Earth will observe two identical images of 
the distant star on either side of the intervening star. For other 

configurations of the two stars, the observed image will contain 
rings, arcs, or distorted images of the distant star. For actual images 

of such systems, see Figure 4. [Courtesy of the author]

Figure 4: These images were taken by the Hubble Space Telescope, 
showing gravitational lensing in two different systems.  In 4a, the 
curvature from a nearby yellowish galaxy cluster bends light from 
a bluish background galaxy into a large arc. And in 4b, in a system 
known as Einstein’s Cross, a central galaxy has bent the light from a 
background source into four separate images. [NASA, Hubblesite]

http://news.bbc.co.uk/2/hi/science/nature/8061449.stm
http://news.bbc.co.uk/2/hi/science/nature/8061449.stm
http://astrogeo.oxfordjournals.org/content/50/4/4.12.full
http://astrogeo.oxfordjournals.org/content/50/4/4.12.full
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Einstein’s equations to calculate which arrangement 
of matter would result in the measured curvature. 

Galaxy clusters, as shown in Figure 5, are some 
of the heaviest objects in the universe and are 
routinely weighed by measuring the curvature 
they produce in space. These clusters contain up 
to thousands of individual galaxies, which in turn 
contain billions of stars each. Clusters can cause a 
massive warping of space, as seen by the outrageous 
lensing in Figure 6. This lensing is the result of light 
from a galaxy behind the cluster bending as it trav-
els through the cluster on its way to Earth. When 
astronomers analyze the magnitude of this bend-
ing, they find something surprising: these clusters 
must contain much more matter than is visible in 

their stars and gas. This mysterious, missing matter 
is known as dark matter, and it is detected in many 
astronomical systems2. It is not yet known what 
exactly dark matter is composed of, and the hunt to 
find out is one of the major current efforts in both 
astronomy and physics. 

In addition to weighing individual clusters, 
astronomers can use curvature measurements 
to weigh something quite remarkable: the entire 
universe. As light leaves a very distant object and 
travels towards the Earth, it will pass through 
many regions of curvature during its trip across 
the universe and each region will cause some small 
bending of the light’s path. The total bending that 
this light undergoes is a measure of the average 

2 The evidence for dark matter extends far beyond measure-
ments of the curvature in clusters. To learn more see previ-
ous issues of The Universe in the Classroom, such as issue 72, 
Invisible Galaxies: The Story of Dark Matter, http://www.
astrosociety.org/edu/publications/tnl/72/darkmatter.html

curvature of the universe. Similar to the way in 
which the distortion of a background galaxy reveals 
the curvature of a galaxy cluster, astronomers can 
observe the distortion of distant hot spots to mea-
sure the average curvature of the universe. These 
hot spots are warm regions of space located at the 
farthest visible extent of the universe, and they are 
studied by observing the cosmic microwave back-
ground radiation. The radiation originating in a hot 
spot has a slightly different color than does radia-
tion from elsewhere, allowing astronomers to map 
the size and location of these hot spots, as shown 
in Figure 7. The observed size of the hot spots 
depends on the average curvature of the universe, 
as depicted in Figure 8. If the universe has some 
average curvature, then the hot spots will either 
appear magnified or shrunk from their actual sizes. 
Since these true sizes are known from the phys-
ics of hotspots, observations such as Figure 7 can 
determine the magnification and hence the average 
curvature. And after all of this talk of curvature, 
astronomers found something very surprising when 
they observed these hot spots: they were not magni-

Figure 5: Abell 2744. This monstrous galaxy cluster is called 
Pandora’s Cluster. Each bright shape in this image is a galaxy, 

containing billions of stars. [NASA, HST]

Figure 6: This cluster, Abell 370, exhibits dramatic lensing on the 
right side of the image. Numerous mild examples of lensing also 
appear in this image, in the form of small arcs of light around the 
central galaxies. To achieve this lensing, this cluster must contain 

vast amounts of dark matter in addition to the visible galaxies.  
[NASA, ESA, HST]

Figure 7: This is the cosmic microwave background radiation across 
the entire sky as revealed by the Planck satellite. The depicted color 
is not the direct observation, but a representation of temperature 

of the observed radiation. The high-temperature regions, marked in 
red, are the hot spots used to measure the average curvature of the 

universe. [ESA, Planck]

http://www.astrosociety.org/edu/publications/tnl/72/darkmatter.html
http://www.astrosociety.org/edu/publications/tnl/72/darkmatter.html
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fied at all. Our universe is, on average, flat. 
This average flatness contains yet another 

surprise as it allows astronomers to calculate the 
density of the universe’s contents using Einstein’s 
relation between curvature and matter. They find 
the universe contains on average 10-29 grams per 
cubic centimeter of material (this is a very small 
number, but remember that most of the universe 
is nearly empty). Yet, the total amount of mat-
ter we observe in the universe, including the dark 
matter discussed above, is only about 30% of this 
number — we are missing roughly 70% of the 

universe’s contents. This missing material has been 
given the exotic name dark energy, and its nature 
is a mystery.3 Just like dark matter, nobody knows 
what dark energy is, though many astronomers and 
physicists are currently working to find out.

Conclusion
Astronomers routinely study the curvature of space 
using geometric measurements. These observations 
reveal that our universe 
resembles something like 
an old wooden table, full 
of chips and scratches. 
Up close, you notice each 
little indent and defect, 
each bit of curvature, 
but if you step back and 
observe from a distance, 
those small indents are 
not noticeable and the 
table looks flat. So it is 
with our universe: it is 
mostly flat and uniform across very large distances, 
but if you zoom in you find it marked by small 
regions of strong curvature due to individual stars 
and galaxies. In addition to determining its shape, 
measurements of curvature allow astronomers 
to weigh the contents of the universe, revealing 
that familiar, visible matter accounts for only 4% 
of the universe’s weight, as depicted in Figure 9. 
Understanding the mysterious other 96% motivates 

3 Like dark matter, the evidence for dark energy also comes 
from multiple sources in addition to measurements of the 
universe’s curvature. To learn more, see http://science.nasa.
gov/astrophysics/focus-areas/what-is-dark-energy/ and http://
hubblesite.org/hubble_discoveries/dark_energy/de-what_is_
dark_energy.php

much current research in astronomy and physics.
Students can approach the connection between 

curvature and geometry through the example of 
two-dimensional curved surfaces, which can be 
explored in a hands-on fashion. They can even rep-
licate in this way the geometric observations made 
by astronomers, helping them to understand these 
fascinating and important measurements. 

Activity: Geometry of Curved Spaces
Overview
In this activity, students will explore geometry on 
curved surfaces and see that determining the laws 
of geometry is equivalent to measuring curvature. 
They can determine geodesics, measure the sum of 
the angles of triangles, and compare the circumfer-
ence and diameter of circles on a curved surface to 
see that the conventional laws of geometry do not 
hold. This is most effective with students that have 
been exposed to plane geometry and will readily 
declare “the angles of a triangle always sum to 180 
degrees” or “the circumference of a circle is always 
π (pi) times its diameter”. 

Materials
Students will need string to facilitate the measur-
ing of distances along their surface. For the curved 
surface, inflatable beach balls are a good choice as 
they provide a large surface area and allow students 
to draw geometric figures directly on the balls. 

• Inflatable beach balls
• Permanent Markers
• String
• Rulers
• Protractors 
• Calculators

Figure 8: This is a depiction of the distortion of distant hot spots 
by the average curvature of the universe. The true path of light, 

shown in solid black, is a direct line only for a universe which is flat 
on average (middle diagram), while for a universe with non-zero 

average curvature the path of light is bent according to the sense of 
the curvature (top and bottom diagrams). This bending causes the 

hotspots to appear magnified or shrunk. Actual observations mimic 
the middle case of no distortion. [Courtesy of the author]

Figure 9: The contents of the 
universe, as revealed in part by 
measurements of the curvature 
of space. The nature of the dark 

96% is still an open question. 
[NASA, HST] 

http://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy/
http://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy/
http://hubblesite.org/hubble_discoveries/dark_energy/de-what_is_dark_energy.php
http://hubblesite.org/hubble_discoveries/dark_energy/de-what_is_dark_energy.php
http://hubblesite.org/hubble_discoveries/dark_energy/de-what_is_dark_energy.php
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Geodesics
1.  Ask students to mark two points on their beach 

ball at roughly the same latitude and about 
halfway between the equator and the poles. These 
points could represent two cities, one located on 
the West Coast of the U.S., and the other located 
directly to the East on the East Coast. 

2.  Have the students draw the path they would take 
to travel between their points as quickly as pos-
sible. Many students will draw a path of constant 
latitude. 

3.  Now ask them to use their string to determine 
the shortest path between these two points, by 
wrapping the string around the ball between the 
points as taunt as possible while still hugging 
the ball. This shortest path is called the geodesic 
between these points. The geodesic path from 
the Western point to the Eastern point is not due 
East, but actually arcs first NE and then SE. 

4.  Students can sketch their routes on a typical 
map projection, with lines of latitude shown as 
horizontal lines and lines of longitude as vertical 
lines (the geographic projection). The direct route 
appears as a horizontal line on this map, but the 
true geodesic appears as a northward arc. Have 
them compare their sketches to maps of airplane 
flight paths, as shown in Figure 10.

Triangles
1.  Ask students to draw triangles on their ball by 

marking any three points and then connecting 
these points with geodesics. Some of the triangles 
should be large and some small. 

2.  With protractors, have the students measure the 
angles of their triangle and compute the sum. 
To measure the angles, it is helpful to press the 
protractor slightly into the inflatable balls. 

3.  Collect and display the students’ sums, compar-
ing to 180 degrees and noting any differences 
in the results for small and large triangles. On a 
perfect sphere, the angles of any triangle sum to 
greater than 180 degrees and the sum increases if 
the area of the triangle increases.

Circles
1.  Ask students to place a dot on their ball to be the 

center of a circle. Ask them to determine how 
they would draw a circle on their ball centered 
on that point. A good technique is to use a piece 
of string as a compass: with one end held to the 
center, use the other end to mark the location 
of different points that are all the same distance 
from the center. After marking a number of such 
points, draw a smooth curve connecting them. 

2.  Have students draw circles, again having some 
large circles and some small circles.

3.  Ask students how they would determine the 
diameter and circumference of their circles using 
string and a ruler. Remember that we want to 
consider the perspective of an ant who lives on 
the sphere and has no knowledge of the outside 
world. The appropriate diameter is the length of 
string along a geodesic that starts on one side of 
the circle, travels through the center, and ends on 
the opposite side of the circle. 

4.  Have the students measure and compute the 
ratio of the circumference to the diameter of 
their circles.

5.  Gather the measurements, comparing them to π 
(pi) and noting the difference between large and 
small circles. On a perfect sphere, the ratio of the 
circumference to the diameter of any circle will 
be less than π (pi) and it will decrease if the area 
of the circle increases. 

Discussion Questions
1.  In what sense have you measured the curvature 

of the beach balls? How do astronomers similarly 
measure the curvature of the universe?

2.  If light leaves a star and travels to the Earth, it 
usually travels a direct line towards the Earth. 
But, if there is another star along this line block-
ing its path, the light from the distant star will 
bend around the intervening star to reach the 
Earth, as in Figure 3. How is this related to the 
geodesics you constructed above?

Figure 10: This is an airline flight path between San Francisco and 
Washington DC, plotted using a geographic projection. [Courtesy of 

the author and kvikr.com.]

http://kvikr.com
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3.  Why do airline routes have the shape of arcs on 
a flat map?

4.  The triangle and circle measurements become 
more like the familiar, flat surface results if the 
shapes are small. How does this compare to your 
experience of living on a curved Earth?

5.  On a sphere such as the Earth (ignoring moun-
tain ranges and oceans), is it possible to start 
walking, make exactly two turns and end up back 
where you started? Consider walking a triangle 
with one corner on the North Pole and two 
corners on the equator. Is this possible on a flat 
surface, such as a tabletop? 

Ideas for Older Students
Secretly Flat Surfaces
Some surfaces look curved but are actually geomet-
rically flat, i.e. their laws of geometry are identical to 
those for a flat surface. The outside of a cone or the 
outer surface of a cylinder are examples. Students 
can see this by using a traffic cone or food can for 
the above measurements. If an ant trapped on one of 
these surfaces were to use geometric measurements 
to measure the curvature, what would they find?

You can also see that these surfaces have flat 
geometry by the fact that they can be created by 
rolling a flat piece of paper without tearing it — 
any curves and angles drawn while the paper is 
unrolled will maintain their size and shape after 
it is rolled. This cannot be done to make a truly 
curved surface, like a sphere. Obviously, cylinders 
and cones are different from a flat plane in some 
way, because an ant walking on them can walk 
in a straight line without turning and eventually 
return to its starting position. But this is due to 

a difference in something other than curvature: 
mathematicians say that these surfaces differ topo-
logically, but are identical geometrically.
Non-uniform Curvature
A sphere is a special surface since it has uniform 
curvature, meaning the laws of geometry do not 
depend on where you are on the surface. This is 
in contrast to something like a football, where the 
geometry near the tip will be different than in the 
flatter, middle portion. Students can explore this 
by using non-uniformly curvature objects for the 
above measurements, such as footballs, flower 
vases, or saddles. 

Since the galaxies in our universe are distributed 
roughly uniformly in space, Einstein’s equations 
predict that they produce an average curvature 
which is uniform across the universe.

Activity: Measuring the Radius of the Earth 
with Eratosthenes
Eratosthenes’s measurement of the radius of the 
Earth is an incredible example of the power of care-
ful observation. His method involves measuring the 
position of the sun at the same time from two differ-
ent locations on the Earth. The measurement itself is 
straightforward, though it will require collaboration 
with another group of students located several hun-
dred miles North or South of you. The coordination 
is not too involved, as the two groups simply need 
to make the same measurement at the same time 
and then share results. This is a great opportunity to 
demonstrate and practice collaboration, which is an 
essential part of all contemporary science.

The Eratosthenes Project provides resources 
to help classrooms around the globe perform 
Eratosthenes’s measurement.  For more informa-

tion, activity guides, and collaboration resources 
see their website at http://www.eaae-astronomy.org/
eratosthenes/

http://www.eaae-astronomy.org/eratosthenes/
http://www.eaae-astronomy.org/eratosthenes/

